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Abstract—Positioning is a key function for autonomous vehicles 

that requires globally referenced localization information. 

LiDAR-based mapping, which refers to the simultaneous 

localization and mapping (SLAM), provides continuous 
positioning in diverse scenarios. However, the error of SLAM can 

accumulate over time. Besides, only relative positioning is 

provided by SLAM. Global navigation satellites system (GNSS) 

receiver is one of the significant sensors for providing globally 

referenced localization and is usually integrated with LiDAR in 

autonomous driving. However, the performance of GNSS is 

severely challenged due to the reflection and blockage of the 

buildings in super-urbanized cities, including Hong Kong and 

Tokyo and New York, causing the notorious non-line-of-sight 

(NLOS) receptions. Moreover, the uncertainty of GNSS 

positioning is ambiguous resulting in the incorrect tuning of its 

weight during the GNSS/LiDAR integration. Innovatively, this 

paper employs a LiDAR to identify the NLOS measurement of 

GNSS receiver using the point-cloud based object detection. 

Measurements from satellites suffered from NLOS reception will 

be excluded based on the proposed fault detection and exclusion 

(FDE) algorithm. Then, the GNSS weight least square positioning 

is conducted based on the survived measurements from the FDE. 

The noise covariance of GNSS positioning is calculated by 

considering the potential positioning errors caused by NLOS and 

remaining line-of-sight (LOS) measurements. The improved 

GNSS result and its corresponding noise covariance are integrated 

with the LiDAR using a graph-based SLAM integration 

framework. Experimental results indicate that the proposed 

GNSS/LiDAR integration can obtain improved positioning 

accuracy in a highly-urbanized area in Hong Kong. 

 
Index Terms—GNSS; LiDAR; Integration; SLAM; Adaptive 

tuning; Urban canyon 

 

I. INTRODUCTION 

utonomous vehicles [1, 2] receive increasing 

attention due to its immense potential market. To fully 

activate autonomous vehicles, the globally referenced and 

meter-level positioning is required in all scenarios. LiDAR is a 

commonly used sensor for autonomous driving which is not 

only be used for object detection [3, 4] and also is employed to 

provide continuous positioning [5]. In LiDAR-based 
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positioning, the SLAM [6, 7] algorithm is usually employed to 

calculate the transformation between the consecutive point 

clouds provided by LiDAR. However, the localization from the 

SLAM can introduce accumulated error over time, and only 

relative positioning is obtained which cannot satisfy the 

requirement of the autonomous vehicles. With the rise of multi-

GNSS, the availability of satellites has been significantly 

enhanced, which makes it possible to receive enough satellites 

for GNSS positioning even in an urban canyon. GNSS is 

currently a significant source providing the continuous global 

positioning. It is usually integrated with the LiDAR-based 

localization to take advantages of both positioning sources [8-

12]. Based on the principle of sensor fusion, the sensor 

integration methods can be divided into two groups, the 

filtering-based and the smoothing-based integrations. The 

symbolic filtering based sensor integration method is the Bayes 

filter, including Kalman filter [13, 14], information filter [15-

17] and particle filter [18-20]. The Bayes filter-based sensor 

integration estimates current state based on current observation 

and the previous state estimation, failing to make use of all the 

states before the previous states. This is because of the 

assumption of the first order of the Markov model [21] which 

is one of the key assumptions of the Bayes filter. Conversely, 

the smoothing approaches [22-25] estimate the pose and map 

by considering the full sets of measurements from the first 

epoch to current epoch. The most well-known smoothing 

method is the graph-based SLAM [26]. These GNSS/LiDAR 

integration solutions can obtain decent positioning performance 

in sparse areas as shown in Fig. 1. However, performance can 

be severely challenged in the super-urbanized area due to poor 

performance and large uncertainty in GNSS positioning. GNSS 

can achieve 5~10 meters regarding positioning accuracy in an 

open area or sparse scenarios base on the conventional single 

point positioning (SPP). However, the positioning error can 

significantly increase to ~50 meters in super-urbanized areas 

[27], due to the reflection and blockage from the surrounding 

buildings. The reflection can cause extra travel delay in the 
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pseudorange domain, thus causing the well-known multipath 

effects and NLOS receptions. Moreover, the uncertainty of the 

GNSS positioning is also greatly increased due to the severe 

NLOS. 

According to a recent survey [28], the NLOS is the dominant 

component to blame for positioning error in dense urban areas. 

Numerous studies [29-33] are conducted to identify the NLOS 

receptions. Due to NLOS is caused by the reflection from 

buildings, the 3D city models are employed to identify the 

NLOS receptions [34-39]. With the aided of the 3D city models, 

the possible blockage from the buildings can be detected, and 

the corresponding NLOS is obtained. Then the NLOS 

measurements are excluded from the GNSS positioning 

subsequently. However, this method relies heavily on the 

availability of the 3D city models which is the main problem 

for its implementation. The range-based 3D map aided GNSS 

(3DMA GNSS) [29, 31-33] is one of the most mature 

techniques to mitigate the positioning errors from NLOS 

receptions. It innovatively employs the ray-tracing simulation 

to simulate the possible transmission routes of the GNSS 

signals. Thus, the travel delay can be calculated based on the 

simulated signal transmission route. The NLOS measurement 

is also corrected and used in the further GNSS positioning 

calculation. However, this method introduces a heavy 

computational load due to the ray-tracing simulation. Moreover, 

3D city models are also needed, and those map-aided GNSS 

positioning methods rely heavily on the initial guess of the 

receiver. 

The other problem in GNSS/LiDAR integration is the large 

uncertainty of GNSS positioning in urbanized areas. The 

uncertainty is referred to as the noise covariance which is 

essential in the GNSS/LiDAR integration. Satisfactory 

performance can be obtained using the GNSS/LiDAR 

integration scheme on the condition that each sensor noises are 

well modeled. However, the researches in [8-10, 12] model the 

GNSS positioning uncertainty as Gaussian distribution. This 

rough modeling of GNSS positioning uncertainty can work in 

the places where GNSS positioning is robust and accurate with 

few NLOS receptions. However, the GNSS positioning error 

does not subject to Gaussian distribution any more in the 

urbanized area [27]. The conventional constant and Gaussian 

distribution-based covariance cannot model the actual 

performance of the GNSS positioning. As a result, the 

GNSS/LiDAR integration result can introduce additional 

positioning error. A GNSS covariance estimation solution 

based on satellites numbers and signal to noise ratio (SNR) 

which can obtain improvements [40] comparing with the 

conventional constant covariance solution. However, this 

scheme cannot effectively model the positioning error from 

NLOS. Taking advantage of the 3D LiDAR sensor, the 3D 

point cloud map is employed to identify the NLOS 

measurement [41]. This method can effectively detect the 

NLOS signals which are similar to the methods in [35, 42] using 

the 3D city models. Then, the NLOS receptions are all excluded 

from the GNSS positioning. The point cloud map plays a 

similar role of the 3D city maps. However, this implementation 

of this method is subjected to the availability of the fully 3D 

point cloud map of buildings, which is difficult to obtain. 

Moreover, the GNSS positioning uncertainty is simply 

estimated based on the new horizontal dilution of precision 

(HDOP), and the actual NLOS errors are not effectively 

modeled. 

Fig. 2 demonstrates a highly urbanized scenario in Hong 

Kong, with both sides being filled with tall buildings. As a 

result, the GNSS receiver can receive lots of NLOS 

measurements which only contains the reflected signals. 

This paper innovatively employs the 3D LiDAR to facilitate 

the GNSS positioning and corresponding covariance estimation 

using the real-time point clouds-based object detection. Then, 

the improved GNSS positioning is integrated with LiDAR 

odometry under a graph-based SLAM framework. The 

 
Fig. 2.  The demonstration of NLOS receptions of GNSS receiver caused by 

the surrounding buildings.  

 
Fig. 1.  The top panel shows the performance of GNSS standalone positioning. 

The red circle indicates the GNSS positioning result and black circle is with 
respect to the ground truth. The bottom panel shows the GNSS/LiDAR 

integration, where the green points represent the point cloud map and the pink 
circles represent the trajectory generated by GNSS/LiDAR integration. 
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flowchart of the GNSS/LiDAR integration solution is shown in 

Fig. 3.  

Firstly, the building boundary is detected based on the 

algorithm proposed in the previous work [43] of our research 

team. The point clouds are fixed to the GNSS frame based on 

the orientation obtained from LiDAR odometry (shown in 

Figure 3). The satellites and the building boundary are both 

projected to a GNSS Skyplot [44]. Secondly, the NLOS 

detection is conducted based on a proposed NLOS detection 

algorithm. GNSS measurements suffered from both NLOS, and 

low elevation angle is excluded based on a proposed FDE 

algorithm. Then, the GNSS positioning is conducted based on 

the survived GNSS measurements. Thirdly, the GNSS 

positioning covariance is calculated by considering the 

potential positioning errors caused by NLOS receptions and 

line-of-sight (LOS) receptions. Finally, the improved GNSS 

positioning result and corresponding covariance are integrated 

with the LiDAR odometry using a graph-based SLAM 

framework.  

II. LIDAR ODOMETRY AND ITS COVARIANCE ESTIMATION  

A. LiDAR Odometry 

The principle of LiDAR odometry [45] is to track the 

transformation between two successive frames of point clouds 

by matching the two frames (called as a reference and an input 

point cloud in this paper). The matching process is also called 

point cloud registration. The objective of point cloud 

registration is to obtain the optimal transformation matrix to 

match or align the reference and the input point clouds. The 

most well-known method of point cloud registration is the 

iterative closest point (ICP) [46]. The ICP is a straightforward 

method to calculate the transformation matrix between two 

consecutive scans by iteratively searching pairs of nearby 

points in the two scans and minimizing the sum of all point-to-

point distances. The objective function can be expressed as 

follows [46]: 

 

𝐶(𝑹̂, 𝑻̂) = argmin∑ ||(𝑹𝒑𝑖 + 𝑻) − 𝒒𝑖||
2𝑁

𝑖=1              (1) 

 

where the N indicates the number of points in one scan p, R and 

T indicate the rotation and translation matrix, respectively, to 

transform the input point cloud (𝒑) into the reference point 

cloud (𝒒). Objective function 𝐶(𝑹̂, 𝑻̂) indicates the error of the 

transformation. The main drawback for this method is that ICP 

can easily get into the local minimum problem. The normal 

distribution transform [47] (NDT) is a state-of-art method to 

align two consecutive scans with modeling of points based on 

Gaussian distribution. The NDT innovatively divide the point 

clouds space into cells. Each cell is continuously modeled by a 

Gaussian distribution. In this case, the discrete point clouds are 

transformed into successive continuous functions. In this paper, 

the NDT is employed as the point cloud registration method for 

the LiDAR odometry. Assuming that the transformation 

between two consecutive frames of point clouds can be 

expressed as 𝒑𝒐𝒔𝒆6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜙𝑥 𝜙𝑦 𝜙𝑧]𝑇 . The 𝑡𝑖 

indicates the translation in x, y and z axis, respectively. The 𝜙𝑥 

 
Fig. 3.  The flowchart of the proposed GNSS/LiDAR integration method. Three parts are included: (a). GNSS positioning and its covariance estimation, (b). 

LiDAR odometry and its covariance estimation and (c). The graph-based optimization. 
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represents the orientation angle of the roll, pitch, and yaw, 

respectively. Steps of calculating the relative pose between the 

reference and the input point clouds are as follows: 

1) Fetch all the points 𝒙𝑖=1…𝑛 contained in a 3D cell [48]. 

Calculate the geometry mean 𝒒 =
1

𝑛
∑ 𝒙𝑖𝑖 . 

Calculate the covariance matrix 

 

 𝜮 =
1

𝑛
∑ (𝒙𝑖 − 𝒒)(𝒙𝑖 − 𝒒)𝑇

𝑖                                           (2) 

 

2) The matching score is modeled as: 

 

𝑓(𝒑) = −score(𝒑) = ∑ exp⁡(−
(𝒙𝑖

′−𝒒𝑖)
𝑇𝜮𝑖

−1
(𝒙𝑖

′−𝒒𝑖)

2
)𝑖     (3) 

 

where 𝒙𝑖 indicates the points in the current frame of scan 

p. 𝒙𝑖
′ denotes the point in the previous scan mapped from 

the current frame using the 𝑝𝑜𝑠𝑒6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝒒𝑖 and 𝜮𝑖 indicate the 

mean and the covariance of the corresponding normal 

distribution to point 𝒙𝑖
′ in the NDT of the previous scan. 

3) Update the pose using the Quasi-Newton method based on 

the objective function to minimize the score, 𝒇(𝒑). 

With all the points in one frame of point clouds being modeled 

as cells, the objective of the optimization for NDT is to match 

current cells into the previous cells with the highest probability. 

The optimization function 𝑓(𝒑) can be found in [47]. In each 

cell containing several points, the corresponding covariance 

matrix can be calculated and represented by 𝜮 . The shape 

(circle, plane or linear) of the cell is indicated by the relations 

between the three eigenvalues of the covariance matrix [47]. In 

this case, comparing with the conventional ICP algorithm, the 

NDT innovatively optimize the transformation by considering 

the features of points. The loop closure detection is conducted 

based on these shape features [49]. 

B. Covariance Estimation of LiDAR Odometry 

The LiDAR odometry can provide continuous relative pose 

estimation, 𝒑𝒐𝒔𝒆6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The associated covariance of this pose 

estimate is essential for the later integration with the GNSS 

positioning. During the NDT process, the covariance of pose 

estimation is related to the uncertainty of the matching between 

the reference and the input point clouds. In the graph-based 

optimization which will be introduced in Section IV, the 

covariance is indicated as the inverse of the information matrix 

𝜴𝑖𝑗 . In each matching process between a point from the 

reference point cloud and a point from the input point cloud, we 

model the degree of matching as: 

 

𝑑𝑚𝑖𝑗 =
1

𝑛
∑ √Δ𝑥𝑘

2 + Δ𝑦𝑘
2 + Δ𝑧𝑘

2𝑛
𝑘=1                           (4) 

 

where the 𝑑𝑚𝑖𝑗 represent the degree of matching between the 

reference and the input point clouds. n represents the number of 

points in the input point cloud. Δ𝑥𝑘  indicates the positional 

difference in x-axis between input and reference points after the 

convergence of NDT is obtained. Δ𝑦𝑘  and Δ𝑧𝑘  indicate the 

positional differences in y and z axis, respectively. Thus, the 

information matrix 𝜴𝑖𝑗  of the degree of matching between 

reference and input can be expressed as: 

 

𝜴𝑖𝑗 = [
𝜴𝑖𝑗

𝑝
0

0 𝜴𝑖𝑗
𝑟 ]                            (5) 

𝜴𝑖𝑗
𝑝

= 𝑰/(C𝑝
2𝑑𝑚𝑖𝑗)                           (6) 

𝜴𝑖𝑗
𝑟 = 𝑰/(C𝑟

2𝑑𝑚𝑖𝑗)                           (7) 

 

where I indicates identity matrix, C𝑝
2 is a coefficient that is 

heuristically determined. In this case, the covariance for LiDAR 

odometry is correlated with the degree of matching. We can see 

from Fig. 2, the LiDAR matching can obtain relatively pose 

estimate on the lateral direction crossing the building. However, 

the longitudinal pose estimate is not as accurate as of the lateral 

one because the building surface tends to be plain and 

featureless. Thus, the covariance should be adaptively changed 

according to the degree of matching in different scenarios. 

III. OBJECT DETECTION AIDED GNSS POSITIONING AND ITS 

COVARIANCE ESTIMATION 

In this section, the detection of building boundary is 

presented firstly. The NLOS fault detection and exclusion 

(FDE) method is presented subsequently. Secondly, GNSS 

positioning is implemented based on the NLOS FDE. Finally, 

the innovative covariance estimation of GNSS positioning is 

introduced. 

A. Building Boundary Detection 

To identify which satellite is blocked by the surrounding 

buildings, the pose of the building boundaries relative to the 

GNSS receiver is needed. As the 3D LiDAR can provide 

sufficient points representing the environments, our previous 

work in [43] presents the detection of double-decker bus and 

dimensions extension algorithm based on LiDAR-based object 

detection. Building boundary detection is based on a similar 

approach. The process of building boundary detection is listed 

as follows: 

1) Segment the point clouds into clusters to represent 

different objects. 

2) Identify the building surface and extend the surface 

dimensions to the actual dimensions using Algorithm 

1. 

3) Obtain the bounding box indicating the building 

surface, and the corresponding top boundary. 

4) Calculate the pose of the building relative to the 

GNSS receiver. 

The inputs of Algorithm 1 are 𝑼𝑡
𝑠𝑒𝑔

 and 𝑶𝑡
𝑜𝑟𝑔

 obtained from 

the segmentation based on the work in [43], point number 

threshold 𝑛𝑢𝑚𝑡ℎ𝑟𝑒𝑠 , length threshold 𝑙𝑒𝑛𝑡ℎ𝑟𝑒𝑠  and height 

threshold ℎ𝑒𝑖𝑡ℎ𝑟𝑒𝑠, building height list 𝑯𝑏𝑢𝑖𝑙𝑑, receiver position 

𝑷𝑡
𝑓𝑢𝑠𝑒𝑑

, yaw angle 𝑌𝑎𝑤𝑟from GNSS/LiDAR integration. The 
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output is the bounding box set 𝑩𝑡
𝑠𝑒𝑔_𝑏𝑢𝑖𝑙

 specifically represent 

the building surface. Each bounding box is indicated by 𝑼𝑖 =

[𝑥𝑖
𝑐, 𝑦𝑖

𝑐 , 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐 , 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐 , 𝑦𝑎𝑤𝑖

𝑐 , 𝑑𝑖
𝑙𝑒𝑛 , 𝑑𝑖

𝑤𝑖𝑑 , 𝑑𝑖
ℎ𝑒𝑖]. The function 

Num mentioned in Algorithm 1 is used to calculate the points 

number of each cluster 𝑶𝑖. The function 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡 is used to 

search the height information from a saved building height list 

containing the rough height information. To determine the 

actual height of the identified building surface, 𝑷𝑡
𝑓𝑢𝑠𝑒𝑑

, 𝑼𝑖 and 

𝑌𝑎𝑤𝑟  are also needed. 𝑷𝑡
𝑓𝑢𝑠𝑒𝑑

 indicates the GNSS position 

given by previous epoch positioning result from GNSS/LiDAR 

integration. The relative position between GNSS receiver and 

detected building can be obtained from 𝑼𝑖. Moreover, the yaw 

angle can be acquired from GNSS/LiDAR integration. For each 

bounding box 𝑩𝑖 , the distance 𝛼𝑖  from the receiver to the 

detected building surface can be calculated as follows: 

𝛼𝑖 = √(𝑥𝑖
𝑐2

+ 𝑦𝑖
𝑐2

+ 𝑧𝑖
𝑐2

)                           (8) 

 

Algorithm 1: Building surface identification from Bounding 

Box sets and height extension 

Input: Bounding Box sets 𝑼𝑡
𝑠𝑒𝑔

= {𝑼1, 𝑼2, … , 𝑼𝑖 , …𝑼𝑛, 𝑡} , 

Organized point clusters 𝑶𝑡
𝑜𝑟𝑔

= {𝑶1, 𝑶2, … , 𝑶𝑖 , …𝑶𝑛, 𝑡}, point 

number threshold 𝑛𝑢𝑚𝑡ℎ𝑟𝑒𝑠, length threshold 𝑙𝑒𝑛𝑡ℎ𝑟𝑒𝑠 and height 

threshold ℎ𝑒𝑖𝑡ℎ𝑟𝑒𝑠, building height list 𝑯𝑏𝑢𝑖𝑙𝑑, receiver position 

𝑷𝑡
𝑓𝑢𝑠𝑒𝑑

, yaw angle 𝑌𝑎𝑤𝑟  

Output: Bounding Box set represent building surfaces 

𝑩𝑡
𝑠𝑒𝑔_𝑏𝑢𝑖𝑙

= {𝑩1, 𝑩2, … , 𝑩𝑖 , …𝑩𝑛 , 𝑡} 

1  set up an empty clusters list 𝑩𝑡
𝑠𝑒𝑔_𝑏𝑢𝑖𝑙

 to save bounding box 

2  for all bounding box 𝑼𝑖 in 𝑼𝑡
𝑠𝑒𝑔

 do 

3    if Num(𝑂𝑖) > 𝑛𝑢𝑚𝑡ℎ𝑟𝑒𝑠 

4     𝑼𝑖 ← [𝑥𝑖
𝑐 , 𝑦𝑖

𝑐 , 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐 , 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐 , 𝑦𝑎𝑤𝑖

𝑐 , 𝑑𝑖
𝑙𝑒𝑛 , 𝑑𝑖

𝑤𝑖𝑑 , 𝑑𝑖
ℎ𝑒𝑖]  

5      if 𝑑𝑖
𝑙𝑒𝑛 > 𝑙𝑒𝑛𝑡ℎ𝑟𝑒𝑠⁡ 𝐚𝐧𝐝 𝑑𝑖

ℎ𝑒𝑖 > ℎ𝑒𝑖𝑡ℎ𝑟𝑒𝑠 

6        𝑑𝑖
ℎ𝑒𝑖 ← 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡(𝑯𝑏𝑢𝑖𝑙𝑑 , 𝑷𝑡

𝑓𝑢𝑠𝑒𝑑
, 𝑼𝑖 , 𝑌𝑎𝑤𝑟) 

7        𝑩𝑖 ← 𝑼𝑖 

8      end if 

9    end if 

10 end for 𝑼𝑡
𝑠𝑒𝑔

 

Thus, the bounding box with extended height representing 

the building surface can be identified using Algorithm 1. The 

bounding box is extended from rectangles ABCD to CDEF as 

can be seen in Fig. 4. The bounding boxes ABCD and CDEF 

indicate the initially detected dimensions and the extended 

dimensions of the building, respectively. Then, the boundary 

parameters for the bounding box 𝑩𝑖 corresponding to building 

surface is denoted by the line segment 𝐸𝐹̅̅ ̅̅  denoted as 𝑩𝑏𝑢𝑖𝑙𝑑
3𝑑 , 

the matrix of bus boundary. To represent the building, two 

points, E and F, are required. The 𝑩𝑏𝑢𝑖𝑙𝑑
3𝑑 , which is relative to 

the LiDAR coordinate system, is structured as follows: 

 

𝑩𝑏𝑢𝑖𝑙𝑑
3𝑑 = [

𝑥3𝑑𝐸 𝑦3𝑑𝐸 𝑧3𝑑𝐸

𝑥3𝑑𝐹 𝑦3𝑑𝐹 𝑧3𝑑𝐹
]       (9) 

 

In this case, the top boundary of the building is detected 

which is used for NLOS detection in the following sub-section. 

The distance between the receiver and the building surface is 

calculated as 𝛼𝑖  which will be used for the covariance 

estimation of GNSS positioning in Section III-D. 

 

B. NLOS Detection and Exclusion 

The boundary of the building is detected as 𝑩𝑏𝑢𝑖𝑙𝑑
3𝑑 . The 

satellites and the building boundary can be projected into a 

GNSS Skyplot which is shown in Fig. 5. The circles indicate 

the satellites and the associated number represents the satellite 

index. The yellow line indicates the building boundary 

projected into the Skyplot. The NLOS is indicated with a red 

circle in Fig. 5. Assume that the initial satellites set are 𝑺𝑽𝑡
𝑎𝑙𝑙 =

{𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑠} , where 𝑺𝑽𝑖 =⁡ {𝑎𝑧𝑖 , 𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖 , 𝜌𝑖} . 

𝑎𝑧𝑖  and 𝑒𝑙𝑖  denote the azimuth and elevation angles of a 

satellite, respectively, 𝑆𝑁𝑅𝑖  indicates satellite SNR and 𝜌𝑖 

denotes the pseudorange measurement. The satellite visibility 

classification based on satellite information and boundaries is 

introduced in the previous work [50] of our research team. 

According to Fig. 5, we can have two satellite sets. One is the 

satellites set 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑛}  containing 

only the NLOS ones. The other one is the LOS satellite set 

𝑺𝑽𝑡
𝑙𝑜𝑠 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑙} and 𝑠 = 𝑛 + 𝑙 is satisfied. 

We can see from the Skyplot in Fig. 5, the majority of the 

satellites are blocked (6 blocked out of 12 satellites). Almost 

only satellites with elevation angle more than 72 degrees are not 

blocked. The exclusion of all the NLOS receptions can result in 

a significant increase in the HDOP which will magnify the 

pseudorange errors in GNSS positioning. In other words, fully 

exclusion of NLOS receptions will conversely deteriorate the 

GNSS positioning result. In the previous work, we analyze 

NLOS errors in [27]. The pseudorange error is smaller while 

 
Fig. 4.  Illustration of point sets segmentation and building surface 

identification. Blue box ABCD represents the initially detected 

building surface. Blue box CDEF represents the extended building 

surface. 
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the higher of elevation angle and smaller the distance from 

GNSS receiver to the reflector (refers to 𝛼𝑖 shown in Fig.2). In 

other words, the NLOS with lower elevation angle can 

introduce larger GNSS positioning error. The relations between 

the satellite elevation, 𝛼𝑖 and pseudorange error are presented 

in [27].  

Inspired by this result [51], this paper proposes to exclude the 

measurement based on satellite elevation angle and the HDOP 

of satellites distribution. The proposed satellites exclusion 

method is shown in Algorithm 2. The inputs of the algorithm 

include the NLOS satellites information sets  𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 =

{𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑛}  and 𝑺𝑽𝑡
𝑙𝑜𝑠 . Only the satellites 

blocked by buildings are contained in the satellite set 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 

(for example, the satellite 8, 17, 28, 22, 30, 39 shown in Fig. 5). 

The thresholds for elevation angle and HDOP are also the 

inputs of Algorithm 2. The output of Algorithm 2 is the 

satellites set survived from this NLOS exclusion process, 

indicated as 𝑺𝑽𝑡
𝑙𝑜𝑠_𝑛𝑙𝑜𝑠 = {𝑺𝑽1

𝑠 , 𝑺𝑽2
𝑠 , … , 𝑺𝑽𝑖

𝑠, … 𝑺𝑽𝑚
𝑠 }. 

After the proposed NLOS exclusion, part of the NLOS 

measurements is excluded with low elevation angles. The 

survived NLOS and LOS measurements are saved into the 

𝑺𝑽𝑡
𝑙𝑜𝑠_𝑛𝑙𝑜𝑠

. This satellite set is used for GNSS positioning using 

WLS method in the following sub-section. 

Algorithm 2: Proposed NLOS Exclusion 

Input: Satellites information set 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 =

{𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑛} , 𝑺𝑽𝑡
𝑙𝑜𝑠 =

{𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑙}  ,elevation angle threshold 

𝑒𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, threshold of HDOP 𝐻𝑡ℎ𝑟𝑒𝑠 

Output: corrected satellites set after NLOS exclusion: 

𝑺𝑽𝑡
𝑙𝑜𝑠_𝑛𝑙𝑜𝑠 = {𝑺𝑽1

𝑠 , 𝑺𝑽2
𝑠 , … , 𝑺𝑽𝑖

𝑠, … 𝑺𝑽𝑚
𝑠 } 

Step 1: sort the satellites set in 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 based on 

elevation angle from small to large 

Step 2: exclude satellite 𝑺𝑽𝑖 from 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 if: 

• its elevation angle is smaller than 

𝑒𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

• The HDOP of the remaining satellites 

(including the remaining satellites in 

𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 and satellites in 𝑺𝑽𝑡

𝑙𝑜𝑠) is smaller 

than the HDOP threshold 𝐻𝑡ℎ𝑟𝑒𝑠. 

Step 3: repeat step 2 until all the conditions in step 2 

cannot be fully satisfied. 

Step 4: save the remaining satellites in 𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 and 

𝑺𝑽𝑡
𝑙𝑜𝑠to 𝑺𝑽𝑡

𝑙𝑜𝑠_𝑛𝑙𝑜𝑠 = {𝑺𝑽𝑡
𝑛𝑙𝑜𝑠 , 𝑺𝑽𝑡

𝑙𝑜𝑠}. 

C. GNSS Weight Least Square Positioning 

Satellites in 𝑺𝑽𝑡
𝑙𝑜𝑠_𝑛𝑙𝑜𝑠

 are employed for GNSS positioning 

calculation. The system clock bias between the GNSS receiver 

and satellites is contained in the pseudorange measurements. 

The equation linking the receiver position and range 

measurements can be structured as the following least square 

(LS) method: 

 

𝒙 = (𝑮𝑇𝑮)−1𝑮𝑇𝝆                             (10) 

 

where 𝑮 represents the observation matrix and is structured by 

unit LOS vectors between the GNSS receiver’s position and 

satellite’s position. 𝒙 indicates the estimated receiver position 

and 𝝆 denotes the pseudorange measurements. 

Conventionally, to better represent the reliability of each 

measurement based on the information measured by the 

receiver, weightings of each measurement are needed. Function 

to calculate the weighting by integrating the measurement SNR 

and satellite elevation angle is expressed as W [52]. Finally, the 

GNSS receiver position can be estimated using the WLS 

method as: 

 

𝑥̂ = (𝑮𝑇𝑾𝑮)−1𝑮𝑇𝑾𝝆                             (11) 

 

In this paper, the GNSS positioning result is represented as 

𝑷𝑡
𝐸𝑁𝑈 = [𝑥𝐸 𝑦𝑁 𝑧𝑢] in the ENU coordinate system [53]. 

D. GNSS Positioning Covariance Estimation 

Conventionally, the GNSS uncertainty is usually modeled by 

considering the SNR, satellites numbers and HDOP if the 

NLOS satellites are not identified [40]. This rough modeling 

can only work in open-sky environments with little NLOS 

receptions. The team in the University of Illinois [42] propose 

to model the GNSS positioning uncertainty solely based on the 

SNR [42] after identifying and excluding the NLOS receptions. 

However, fully NLOS exclusion is not acceptable in the super-

urbanized area as it can result in a significant increase in HDOP. 

In this paper, we propose to model the covariance matrix of 

GNSS positioning that consisted of two parts, the NLOS and 

LOS, as following: 

 

𝑹𝐺 = 𝑹𝐶 + 𝑹𝐸                                 (12) 

 

 
Fig. 5. GNSS Skyplot indicates the satellites distribution and building 

boundary. 
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The 𝑹𝐶 is the covariance matrix indicates the uncertainty of 

GNSS positioning with the assumption that all the satellites 

used for positioning in 𝑺𝑽𝑡
𝑙𝑜𝑠_𝑛𝑙𝑜𝑠

 are line-of-sight. The 𝑹𝐶  is 

calculated as follows: 

 

𝑹𝐶 = (
1 0
0 1

)𝐻𝐷𝑂𝑃𝑥𝑦𝜎𝑈𝐸𝑅𝐸
2                             (13) 

 

𝜎𝑈𝐸𝑅𝐸  indicates the user-equivalent range error (UERE) and is 

experimentally determined in this paper. The 𝐻𝐷𝑂𝑃𝑥𝑦  is the 

HDOP of the GNSS positioning.  

The 𝑹𝐸  is the covariance matrix indicates the extra 

uncertainty of GNSS positioning caused by the NLOS. The 𝑹𝐸 

is calculated as follows: 

 

𝑹𝐸 = (
1 0
0 1

)𝐻𝐷𝑂𝑃𝑥𝑦𝜎𝑁𝐿𝑂𝑆
2                               (14) 

 

σ𝑁𝐿𝑂𝑆  indicates the extra uncertainty caused by the NLOS 

receptions. According to [27], the pseudorange error for each 

NLOS measurement can roughly be modeled as follows: 

 

𝛾 = 𝛼(𝑠𝑒𝑐𝜃𝑒𝑙𝑐(1 + 𝑐𝑜𝑠2𝜃𝑒𝑙𝑐) + 𝑠𝑒𝑐𝜃𝑎𝑧𝑚(1 + 𝑐𝑜𝑠2𝜃𝑎𝑧𝑚)) 

(15) 

 

where 𝛼 represent the distance between the GNSS receiver and 

the reflector and is obtained from the surface detection 

presented in Section III-A. The 𝜃𝑒𝑙𝑐  and 𝜃𝑎𝑧𝑚  represents the 

elevation and azimuth angles, respectively. Thus, we can obtain 

the total uncertainty of pseudorange σ𝑁𝐿𝑂𝑆 for all the satellites 

(totally k satellites) as following: 

 

σ𝑁𝐿𝑂𝑆 = ∑ 𝛾𝑖
𝑘
𝑖=1                                  (16) 

 

In this case, the covariance of GNSS positioning is calculated 

by considering both the LOS and the NLOS measurement. The 

component needed to be estimated in the matrix 𝑹𝐺  is the 

following: 

 

𝑹̅ = 𝐻𝐷𝑂𝑃𝑥𝑦𝜎𝑁𝐿𝑂𝑆
2 +⁡𝐻𝐷𝑂𝑃𝑥𝑦𝜎𝑈𝐸𝑅𝐸

2                (17) 

 

Moreover, only the covariance in the horizontal direction is 

obtained. In the super-urbanized area, the vertical dilution of 

precision (VDOP) is significantly larger than the HDOP. The 

positioning error in the vertical direction can be very bad due to 

the distorted vertical distribution of the satellites. Thus, only the 

horizontal GNSS positioning and the corresponding covariance 

are used in the proposed GNSS/LiDAR integration. 

IV. GRAPH-BASED GNSS/LIDAR INTEGRATION 

This section presents the graph-based GNSS/LiDAR 

integration. Pose graph optimization is to construct all the 

measurements into a graph as constraints and calculate the best 

set of poses by solving a non-linear optimization problem. In 

this paper, the constraints are provided by both the object 

detection aided GNSS positioning and the LiDAR odometry. 

Two steps are needed to implement the graph-based 

GNSS/LiDAR integration optimization, the graph generation, 

and graph optimization.  

A. Graph Generation 

The graph is constituted by edges and vertexes [26]. Edges 

are provided by the observation measurements including the 

GNSS and the LiDAR as shown in Fig. 6. The 𝒙𝑖 represents the 

6-dimension (6D) pose estimation that included the position 

and orientation. 𝒆𝑖𝑗 indicates the error function evaluating the 

difference between the estimated state and the observation from 

sensors. 𝒛𝑖𝑗  represents the observation. In the graph 

optimization, the 𝒙𝑖 is the state. The observations include three 

parts, the measurements from the GNSS, loop closure, and the 

LiDAR positioning presented in Sections II and III, respectively. 

The blue circles and red lines represent the nodes and the edges 

respectively, which are provided by the globally referenced 

GNSS positioning. The red circles and blue lines indicate the 

nodes and the edges respectively, provided by LiDAR 

odometry. The black line indicates the edge provided by loop 

closure. The error function for GNSS observation is expressed 

as follows: 

 

𝒆𝑖
𝐺𝑁𝑆𝑆 = ||ℎ𝑖(𝒙𝑖) − 𝒛𝑖

𝐺𝑁𝑆𝑆||𝜴
2                   (18) 

 

where the ℎ𝑖(∗) is the measurement function, relating between 

the GNSS measurement 𝒛𝑖
𝐺𝑁𝑆𝑆  to the state 𝒙𝑖 . 𝜴  is the 

covariance matrix of the corresponding observation 

measurement. 

LiDAR odometry can provide continuous 6D pose estimate 

and corresponding covariance. The error function for LiDAR 

odometry is expressed as: 

 

𝒆𝑖
𝐿𝑖𝐷𝐴𝑅 = ||𝒙𝑖 − 𝒙𝑖−1 − 𝒛𝑖

𝐿𝑖𝐷𝐴𝑅||𝜴
2                   (19) 

 

where the 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅 is the measurement from LiDAR odometry. 

Loop closure can be detected when the vehicle passes similar 

or neighboring area again. The error function for loop closure 

is expressed as: 

 

𝒆𝑖,𝑗
𝑙𝑜𝑜𝑝

= ||𝒙𝑖 − 𝒙𝑗 − 𝒛𝑖
𝑙𝑜𝑜𝑝

||𝜴
2                   (20) 

 

where the 𝒛𝑖
𝑙𝑜𝑜𝑝

 is the measurement from loop closure. 

Only 2D horizontal positioning and corresponding covariance 

are provided by GNSS positioning in this paper. GNSS 

positioning error can go up to ~50 meters in super-urbanized 

area. As the covariance of GNSS positioning is reasonably 

estimated by considering the NLOS and LOS receptions, we 

propose to add the GNSS results into the graph (shown in Fig. 

6) only when the √𝑹̅ of GNSS positioning is smaller than a 
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threshold 𝑹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In this case, only the GNSS measurement 

with small covariance is applied to the graph optimization for 

providing the globally referenced update. This exclusion can 

prevent the severely biased GNSS positioning result being 

applied to the graph. The detail of graph generation is shown in 

Algorithm 3. 

Algorithm 3: Proposed Graph Generation 

Input: GNSS results 𝒛𝑖
𝐺𝑁𝑆𝑆  and the corresponding 

covariance 𝑹̅𝑖 . LiDAR odometry observation 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅 , 

loop closure 𝒛𝑖
𝑙𝑜𝑜𝑝

 

Output: Graph of nodes and vertexes 

Step 1: Initialize the estimated state using the GNSS 

results. 

Step 2: Add the observation 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅  from LiDAR 

odometry into the graph if any of the 

following conditions are satisfied:  

• The translation between the current 

LiDAR odometry and the previous node 

in the graph overweigh 𝑇𝑟𝑎𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

• The rotation between the current LiDAR 

odometry and the previous node in the 

graph overweigh 𝑅𝑜𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 

Step 3: Add the observation of GNSS results in the 

graph if:  

• The value √𝑹̅𝑖 is smaller than 𝑹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 

Step 4: Add the observation 𝒛𝑖
𝑙𝑜𝑜𝑝

 from loop closure 

into the graph if loop closure is detected.  

Step 5: Repeat Steps 2 and 3 until the end. 

 

Comparing with the conventional graph-based GNSS/LiDAR 

integration, this paper innovatively adds the improved GNSS 

results and corresponding covariance into the graph 

optimization. The effectiveness of this novelty is subjected to 

the performance of the uncertainty estimation of GNSS 

positioning which is introduced in Section III-D. 

B. Graph Optimization 

The graph optimization [54] is straightforward that took all 

the constraints into a non-linear optimization problem. The 

optimization form is shown as following: 

𝐹(x) = ∑ ||ℎ𝑖(𝒙𝑖) − 𝒛𝑖
𝐺𝑁𝑆𝑆||𝜴

2 +𝑖,𝑗 ||𝒙𝑖 − 𝒙𝑖−1 −

𝒛𝑖
𝐿𝑖𝐷𝐴𝑅||𝜴

2 +||𝒙𝑖 − 𝒙𝑗 − 𝒛𝑖
𝑙𝑜𝑜𝑝

||𝜴
2                             (21) 

 

where 𝐹(𝑥) is the optimization function which is the sum errors 

of all the edges. 𝜴𝑖𝑗  is the information matrix indicating the 

importance of each constraint in the global graph optimization. 

The information matrix is the inverse of the covariance matrix. 

The final solution to this optimization is the 𝒙∗  (6D pose 

estimate) satisfying the following function: 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹(𝒙)                                      (22) 

Thus, the optimization lies in solving the equation above to 

obtain the optimal 𝒙∗. We can see from the optimization form 

𝐹(𝒙) , the covariance of the GNSS and LiDAR odometry 

positioning results are reflected in 𝜴. If the covariance of each 

positioning result is not properly estimated, the global 

optimization will be deflected resulting in the erroneous final 

pose sets. 

V. EXPERIMENTAL EVALUATION 

To evaluate the performance of the proposed GNSS/LiDAR 

integration method in this paper, two experiments are presented 

in this section. The performance of LiDAR stand-alone 

positioning in diverse urban scenarios is extensively evaluated 

in previous work [55] of our research team. 

GNSS positioning results are presented at first. Then, the 

GNSS/LiDAR integration experiment results are analyzed. 

A. Experimental Setup 

Two experiments are conducted in Hong Kong. The first 

experiment is implemented in a narrow street with buildings on 

both sides which can be seen in Fig. 7. Both sides of the road 

are filled with buildings and the distance between the buildings 

is just 7~10 meters (see in Fig. 7). The experiment is conducted 

with an open loop route. The other experiment is conducted 

with a closed loop route, and loop closure is available for the 

GNSS/LiDAR integration. The objective of this closed drive is 

to validate that the proposed GNSS/LiDAR integration solution 

 
Fig. 6.  A demonstration of graph generation based on GNSS and LiDAR 

positioning. 

 

Fig. 7.  The sensors setup of the vehicle: GNSS and LiDAR sensors are 

installed on the top of the vehicle. 
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is repeatable in diverse scenarios and the overall performance 

can be well enhanced with the aid of loop closure. 

In both of the experiments, the u-blox M8T receiver is used 

to collect raw GPS and BeiDou measurements. 3D LiDAR 

sensor, Velodyne 32, is employed to provide the real-time point 

clouds scanned from the surroundings. Both u-blox receiver and 

3D LiDAR are installed on the top of a vehicle during the 

experiment which can be seen in Fig. 7. The data were collected 

within approximately 5 minutes’ drive at a frequency of 1 Hz 

for GNSS and 10 Hz for 3D LiDAR using Robot Operation 

System (ROS) [56] time to synchronize all the sensor 

information. The sensor setup and the corresponding coordinate 

system are shown in Fig. 7 with x-axis (LiDAR coordinate 

system) pointing back of the vehicle. The GNSS positioning is 

represented in ENU reference system. The initial position of the 

experiment is employed as the initial position calculation of 

ENU coordinates. Moreover, LiDAR coordinate is shown in 

Figure 7 and are calibrated [55] with GNSS in ENU [57] 

coordinate at the beginning of the experiment.  

In addition, the NovAtel SPAN-CPT, GNSS/INS (fiber optic 

gyroscopes) integrated navigation system is used to provide the 

ground truth trajectory with decimeter level accuracy. 

B. Experimental Evaluation using Data Collected by Open 

Loop Route 

1) GNSS Positioning Evaluation 

GNSS positioning is evaluated by comparing WLS-based 

GNSS positioning with the GNSS positioning aided by NLOS 

exclusion. The result of the GNSS positioning (2 dimensions) 

using different methods are listed in TABLE I. If all the NLOS 

receptions are excluded from GNSS positioning, the result is 

shown in the third column. The result obtained by the proposed 

NLOS exclusion method in Algorithm 2 (WLS-NE) is shown 

in the fourth column. Due to the blockage from the tall 

buildings, the majority of the measurements are NLOS.  

The conventional WLS method can obtain 29.81 meters of 

mean error. The error magnitude is much larger than the 

positioning error in [36] where its experiment is conducted in 

less urbanized areas. The standard deviation is 21.09 and the 

availability is 100% during the test. With the exclusion of all 

the NLOS measurements, the GNSS positioning is even worse. 

The mean of its positioning error goes up to 30.25 meters and 

the standard deviation also slightly increase. Moreover, the 

availability of this solution decreases to 97.45 %. This result 

shows that the exclusion of all NLOS measurements may not 

improve the overall performance in highly urbanized areas. 

This is due to the distortion of the satellite’s geometric 

distribution, namely, larger HDOP occurs. 

With the proposed method shown in Algorithm 2, the mean 

positioning error is slightly improved from 29.81 to 27.09 

meters. Moreover, the availability of the GNSS solution is 

guaranteed (100%). The improvement is not too large because 

of the excessive NLOS receptions in the tested scenario. 

The satellite numbers and the GNSS positioning results are 

shown in Fig. 8. The green curve represents the number of the 

satellite when all the NLOS receptions are excluded. The blue 

curve indicates the satellite number based on the proposed 

NLOS exclusion algorithm (Algorithm 2). The satellite number 

can be decreased to less than 5 if all the NLOS receptions are 

excluded which can be seen in the top panel of Fig. 8. Due to 

the frequent NLOS exclusion based on Algorithm 2, the 

satellite number is slightly decreased comparing to the red 

curve. Only part of the identified NLOS is excluded using 

Algorithm 2 can guarantee enough satellites for GNSS 

positioning calculation. As shown in the bottom panel of Fig. 8, 

the proposed NLOS exclusion can introduce improvements 

sometimes instead of all the time. This is because there are too 

 

Fig. 8.  Experiment 1: Experimental results of WLS and WLS-NE, which 

depicted in red and blue dots, respectively. Top panel indicates the numbers 

of satellites used. Bottom panels indicates the 3D positioning errors. 

 

Fig. 9.  Experiment 1: Top panel indicate the numbers of satellite used in the 

conventional and proposed GNSS positioning methods. Bottom panel 

indicates the corresponding covariance estimated. The conventional and 
proposed covariance estimation are indicated in red and blue dots, 

respectively. GNSS positioning error using the WLS-NE is represented in 

black dots (ground truth for covariance). 

 

TABLE I 

PERFORMANCE OF THE THREE GNSS POSITIONING METHODS (2D POSITIONING) 

All data 
Conventional: 

WLS 
WLS-NE-A (Excluding all NLOS) 

WLS-NE-P (Partially Excluding 

NLOS) 

Mean Error 29.81 m 30.25 m 27.09 m 

std 21.09 m 22.28 m 19.6 m 

Availability 100% 97.45% 100% 
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many NLOS receptions and exclusion can also enlarge the 

HDOP in some ways.  

The result of covariance estimation based on the proposed 

method in Section III-D is shown in Fig. 9. The black dots 

represent the GNSS positioning error using the WLS-NE 

method. This is the value that the estimated covariance 

expected to approach. The red dots represent the conventional 

GNSS covariance estimation based on the method in [41] (𝑹𝐶). 

This method cannot model the NLOS error caused by signal 

reflection. We can see from the Fig. 9, this covariance 

estimation slightly fluctuated due to the change in HDOP. 

However, this covariance is far from the black dots. The blue 

dots represent the proposed GNSS positioning covariance 

estimation result based on √𝑹̅  as shown in (17). This 

covariance is closer to the black dots (refer to the ground truth 

of covariance) comparing with that of the conventional 

covariance. As shown in Fig. 9, the proposed covariance can 

effectively model the GNSS positioning error in some epochs, 

especially when then GNSS positioning error is smaller. 

However, some epochs encounter a large difference between 

the estimated covariance and actual positioning error. This is 

because the proposed method can only identify the NLOS near 

the vehicle which is within the detection range of the 3D 

LiDAR (commonly 120 meters). The NLOS that its reflector 

too far away from the vehicle is not be modeled by the proposed 

covariance estimation method. Moreover, the multipath effects 

are also not modeled in this covariance estimation method. 

2) GNSS/LiDAR Integration Evaluation 

The trajectory of the tested vehicle is shown in Fig. 10. The 

red circles represent the GNSS positioning results using the 

proposed WLS-NE method. The green curve indicates the 

ground truth of the tested trajectory. We can see from the figure 

that the majority of the epochs possess large positioning error. 

In the GNSS/LiDAR integration, GNSS is the only source that 

can provide absolute positioning information. The graph 

generation in the SLAM is shown in Fig. 11. Fig. 11 indicates 

the organized point cloud, nodes and edges for further graph-

based optimization.  

As we can see from Fig. 8, the WLS-NE based GNSS 

positioning solution can still even reach 54 meters. In this 

section, three GNSS/LiDAR integration methods are compared. 

• Method (a): GNSS/LiDAR integration with conventional 

GNSS covariance estimation [41]. 

• Method (b): GNSS/LiDAR integration with proposed 

GNSS covariance estimation. 

• Method (c) GNSS/LiDAR integration with proposed GNSS 

covariance estimation. However, GNSS positioning is 

integrated into graph optimization only when √𝑹̅ is smaller 

than the threshold𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

  

The GNSS/LiDAR integration results are given in Table II 

using the three methods. The mean error of the conventional 

GNSS/LiDAR integration is 24.07 meters and is improved 

comparing with the performance of GNSS standalone (27.09 

meters). With the aid of proposed GNSS positioning covariance 

(Method (b)), the error of GNSS/LiDAR integration is slightly 

decreased to 22.67 meters. The standard deviation is also 

slightly decreased. In the integration method (b), all the GNSS 

positioning results and corresponding covariance are applied in 

the GNSS/LIDAR integration. As the majority of the GNSS 

positioning is erroneous, it is reasonable to use GNSS results 

when it is accurate. The accurate results can be identified when 

 

Fig. 11. Graph generation in the real graph-slam process. 

TABLE II 

EXPERIMENT 1: PERFORMANCE OF THE THREE GNSS/LIDAR INTEGRATION METHOD 

All data 

Method (a) 

Conventional 

GNSS/LiDAR 

Integration 

Method (b)  

Proposed GNSS/LiDAR Integration  

Method (c)  

Proposed GNSS/LiDAR Integration B 

Mean Error 24.07 m 22.67 m 12.67 m 

STD 14.69 m 14.48 m 6.57 m 

Availability 100% 100% 100% 

 

 

Fig. 10. Experiment 1: Trajectory of the autonomous vehicle is indicated by 

green curve. The red circles indicate the GNSS positioning result. 
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its estimated covariance is less than 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Dramatic 

improvement is obtained after the constraint of covariance is 

applied. The mean error and standard deviation are decreased 

to 12.67 and 6.57 meters, respectively. Moreover, the 

availabilities of all three methods are 100%. This improvement 

shows that the proposed covariance estimation can improve the 

performance of the GNSS/LiDAR integration. The 

GNSS/LiDAR integration results are shown in Fig. 12. 

Comparing to the Bayes filter-based [13, 14] sensor fusion 

method, the graph-based GNSS/LiDAR integration takes all the 

constraints into the optimization framework. Thus, the poses of 

the whole organized point clouds, nodes, edges changed over 

time. We can see from Fig. 12 and conclude that:  

(1) The proposed method (c) obtained the most accurate 

trajectory over the three methods. 

(2) The positioning error decreased near the end of the drive, 

meaning that the GNSS/LiDAR integration can mitigate the 

drift of LiDAR odometry. 

The error of GNSS/LiDAR integration is shown in Fig. 13. 

We can see from the figure that the method (c) outperforms the 

other two methods over the majority of the epochs. 

The previous research [10, 40] tends to integrate the GNSS 

and LiDAR in the scenario where the GNSS positioning error 

is less than 5~8 meters using GNSS WLS. In this tested scenario, 

the GNSS results with an enormous error are applied in the 

GNSS/LiDAR integration which is very common in super-

urbanized cities such as Hong Kong. 

 

  

 

 

 

C. Experimental Evaluation using Data Collected by Closed 

Loop Route  

1) GNSS Positioning Evaluation 

This experiment is conducted in a super-urbanized area with 

fewer satellites visible comparing with that of the first 

 

Fig. 13. Experiment 1: Positioning error of the GNSS/LiDAR integration results based on the three methods. Red, green and blue curves indicate the GNSS/LiDAR 

integration methods (a), (b) and (c), respectively. 

 

Fig. 12. Experiment 1: Results of the GNSS/LiDAR integration based on three integration methods. The blue curve is constituted by the optimized nodes (refer to 
the red node in Fig. 6. The black curve indicates the ground truth of the trajectory that provided by NovAtel SPAN-CPT. The red line represents the edge from GNSS 

positioning: refer to the red line in Fig. 6). The green points represent the organized point clouds. 
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experiment. Moreover, this experiment route is a closed loop. 

The loop closure [49] detection is employed in the 

GNSS/LiDAR integration process in this experiment. The 

experiment scene is shown in Fig. 14. The height of the building 

is about 30 meters. The distance between the buildings is just 

about 8 meters. We can see from the figure that the majority of 

the GNSS positioning results lie into the buildings due to the 

multipath effects and the excessive NLOS receptions. Again, 

the mean error is slightly reduced from 46.62 (conventional 

WLS) meters to 43.12 meters (proposed WLS-NE). 

The covariance estimation result of the proposed method is 

shown in Fig. 15. Compared with the covariance estimation in 

the first experiment shown in Fig. 9, the covariance is better 

estimated in this experiment. The main reason is that the 

majority of the satellites are NLOS due to the tall building 

which means less multipath effects. As discussed earlier, the 

multipath is not modeled in the proposed covariance estimation 

method. In other words, the proposed GNSS positioning 

covariance estimation method can obtain better performance in 

narrower streets. 

2) GNSS/LiDAR Integration Evaluation 

GNSS/LiDAR integration performance is shown in TABLE 

III. The loop closure detection is applied in this experiment as 

the driving route is a closed loop shown in Fig. 14. 

The conventional solution obtains a mean positioning error 

of 25.68 meters with a standard deviation of 28.09 meters. With 

the assistant of the proposed covariance estimation, the mean 

positioning error drastically decreased to 8.14 meters. The 

mean positioning error is reduced to 7.49 meters with the 

covariance magnitude constraint being applied. Moreover, the 

standard deviation is also decreased to 5.43 meters.  

The final optimized nodes and organized point clouds are 

shown in Fig. 16. The positioning error during the test is shown 

in Fig. 17. We can see from Fig. 16, the edges of GNSS are 

dramatically decreased with the constraint of covariance.  

Interestingly, the positioning error of all methods decreased 

after epochs 120. The reason is the detection of the loop closure, 

which is a strong constraint for further graph-based 

optimization. Regarding the performance of conventional 

GNSS/LiDAR integration with no loop closure in the first 

experiment, the positioning error can still reach about 40 meters 

at the end of the test. 

D. Discussion 

The proposed GNSS/LiDAR integration method obtained 

improved performance with the aid of the NLOS exclusion 

(empowered by LiDAR-based object detection) and the 

proposed covariance estimation. The proposed NLOS 

exclusion can obtain improvements when more satellites are 

available. Though the positioning performance of GNSS is very 

unsatisfactory during both of the experiments. GNSS is still 

indispensable for providing the globally referenced positioning.  

The proposed covariance estimation can capture the majority 

of GNSS positioning errors. However, the GNSS positioning 

error caused by the multipath effect cannot be modeled using 

the proposed covariance model. In the first experiment, the 

mean GNSS positioning error is less than 30 meters which is 

better than the second experiment. This is because the buildings 

in the second experiment are even taller which introduces more 

NLOS receptions consequently. As presented in Algorithm 2, 

only the NLOS is modeled in the covariance. Thus, the second 

experiment obtains better performance regarding the GNSS 

covariance estimation which can be seen by comparing the Figs. 

 

Fig. 15.  Experiment 2: Top panel indicate the numbers of satellite used in the 
conventional and proposed GNSS positioning methods. Bottom panel 

indicates the corresponding covariance estimated. The conventional and 

proposed covariance estimation are indicated in red and blue dots, 
respectively. GNSS positioning error using the WLS-NE is represented in 

black dots (ground truth for covariance). 

. 

 

TABLE III 

EXPERIMENT 2: PERFORMANCE OF THE THREE GNSS/LIDAR INTEGRATION METHODS 

All data 

Method (a) 

Conventional 

GNSS/LiDAR 

Integration 

Method (b)  

Proposed GNSS/LiDAR Integration  

Method (c)  

Proposed GNSS/LiDAR Integration  

Mean Error 25.68 m 8.14 m 7.49 m 

STD 28.09 m 6.73 m 5.43 m 

Availability 100% 100% 100% 

 

 

Fig. 14. Experiment 2: Trajectory of the vehicle is indicated by green curve. 

The red circles indicate the object detection aided GNSS positioning results.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

13 

9 and 15. As the multipath effects are random and difficult to 

model. Thus, effectively modeling of multipath is a promising 

work to yield. 

The proposed constraint of covariance applied to the 

GNSS/LiDAR integration can improve performance. This 

novel constraint guarantees that only the accurate GNSS 

positioning will be applied to the integration. In other words, 

the effectively estimated covariance can identify the erroneous 

GNSS results. 

In overall, the proposed GNSS covariance estimation can 

improve the GNSS/LiDAR integration performance. The 

globally referenced positioning is obtained. This result proves 

that the covariance estimation is significant for the 

GNSS/LiDAR integration. However, the integrated positioning 

result is still large with the best performance of even 7.49 

meters of mean error in the second experiment. 

To realize autonomous vehicles, this kind of scenario is still 

a challenge for GNSS positioning. Even the real-time kinematic 

(RTK) GNSS can suffer from severe NLOS and multipath 

effects. Direct NLOS exclusion will result in the big distortion 

of the satellites distribution, namely the HDOP. Thus, 

effectively modeling the covariance of GNSS positioning is a 

potential solution to improve the robustness of the 

GNSS/LiDAR integration in super-urbanized areas. 

VI. CONCLUSIONS AND FUTURE WORK 

With the fast development of the autonomous vehicles, 

GNSS and LiDAR became the indispensable sensors to provide 

sensing and localization functions. The environment feature can 

be used to improve GNSS positioning performance in 

urbanized areas with excessive tall buildings. To the best of the 

author’s knowledge, this paper is the first attempt to employ the 

LiDAR-based object detection to improve the GNSS. 

This paper innovatively employs the LiDAR perception to 

detect building surface to facilitate the covariance modeling of 

GNSS positioning for the GNSS/LiDAR integration. This study 

firstly employs the LiDAR to provide the LiDAR odometry 

based on the state-of-art NDT and the corresponding covariance 

is estimated. Then, the building surfaced is detected and 

identified using the object detection followed by the NLOS 

detection and novel NLOS exclusion. Thirdly, the GNSS 

 

Fig. 16. Experiment 2: Results of the GNSS/LiDAR integration based on three integration methods. The blue curve is constituted by the optimized nodes (refer to 

the red node in Fig. 6. The black curve indicates the ground truth of the trajectory that provided by NovAtel SPAN-CPT. The red line represents the edge from 

GNSS positioning: refer to the red line in Fig. 6). The green points represent the organized point clouds. 

 

 

Fig. 17. Experiment 2: Positioning error of the GNSS/LiDAR integration results based on the three methods. Red, green and blue curves indicate the GNSS/LiDAR 

integration methods (a), (b) and (c), respectively. 
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positioning is implemented using the surviving range 

measurements. The GNSS positioning covariance is proposed 

based on an NLOS model. Fourthly, the LiDAR odometry and 

the GNSS positioning is integrated by a graph-based SLAM 

framework. Finally, the experiment is conducted to validate the 

propose GNSS/LiDAR integration framework. The results 

show that the proposed method of GNSS positioning 

covariance estimation can model the majority of the positioning 

error caused by NLOS reception. The performance of the 

proposed GNSS/LiDAR integration with adaptive covariance 

outperforms the conventional GNSS/LiDAR integration with 

the constant covariance. 

Furthermore, the remaining GNSS positioning error caused 

by the multipath effects will be studied and modeled to improve 

the performance of GNSS positioning covariance estimation. 

Moreover, the real-time kinematic (RTK) GNSS will be applied 

to integrate with LiDAR to verify how much the proposed 

method can help the RTK GNSS/LiDAR integration. 
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